(지난 2012년에 장하석 선생이 서울에서 발표했었던 내용을 간추리고 논의주제를 이끌어내 보았다. 한참 전에 세미나 발표를 위해 준비했었던 것을 여기에도 올린다. 해당 밸표내용은 선생의 논문 [How Historical Experiments Can Improve Scientific Knowledge and Science Education: The Cases of Boiling Water and Electrochemistry.(2010)]을 바탕으로 한다. 장하석 선생은 잘 알려진 과학사학자/과학철학자이지만, 최근 과학교육에까지 외연을 넓혀가고 있는 것으로 보인다. 위 논문과 발표는 그의 이런 행보를 드러낸 대표적인 작업이라 할 수 있다.)
Can Historical Experiments Improve Science Education?
by Hasok Chang (Cambridge Univ). in 2012 IHPST Seoul
[발표문 요약]
Abstract
… Complementary experiments, which aim to recover and extend lost scientific knowledge, and suggest that it can help science education in four major ways:
to enrich the factual basis of science teaching;
to improve students understanding of the nature of science;
to foster habits of original and critical inquiry;
to attract students to science through a renewed sense of wonder.
… particularly instructive contributions for education can be made by complementary experiments, which seek to recover past experimental knowledge that has been neglected by modern science, and further extend the knowledge that has been recovered.
Varieties of historical experiments
two types of replication(or, more of\r less synonymously, reproduction, repetition, re-creation, or re-enactment) by Dietmar Hotteche(2000).
“this replication is oriented as close to the original as possible”
“displaying the same phenomenon in a physical sense only, which is not replicated in historical detail”
1. historical replication … their hope is that our imperfect reproductions of original experiments will still produce some invaluable insights about the work of past scientists.
2. physical replication … the main objective is to reproduce the physical phenomena that were created and observed in past experiments.
… physical replication is not simply a subset of historical replication, or an inferior version of it; rather, the two types of replication have different aims.
There are some situation in which physical replication is not achieved in our best version of historical replication. An interesting case here is how Peter Heering (1992) obtained results conforming to the inverse square law of electrostatic repulsion by employing a Faraday cage around his version of Coulomb’s apparatus.
3. (added by Chang) … there is the kind of work that I will characterize as extension; this most often arises as a follow-up to replication.
Having performed any experiment (historical or otherwise), it is difficult to resist the natural curiosity(“But what will happen if I do this?”). Historical experiments are not immune to this drive of curiosity, and it would be unnatural to restrain our desire to learn, even if we are “mere historians”.
Reports of extension are rare … , there are some interesting instances.
… Allchin et al. (1999) regard history as a source of questions.
… Cavacchi remarks “Using historical accounts only as a starting point and motivation, students’ improvisational experiments explored personal interests and provided grounds for synthesizing new understandings”.
Extension may not always serves the purpose of historical understanding, but it is a category of historical experimentation to the extent that it is inspired by the past and would not occur naturally to current scientists without knowledge of the history.
physical replications and extensions can improve scientific knowledge itself.
Physical replications constitute a recovery of lost knowledge, if the replicated phenomena had been forgotten or neglected by current science.
Successful extensions create genuinely new scientific knowledge.
The illustration and advocacy of this aim, particularly in relation to science education, will be my main object … the function of HPS as complementary science, elaboration on its experimental dimension.
… complementary experiments those historical experiments that are aimed at the recovery and extension of scientific knowledge.
Examples of complementary experiments: boiling and electrochemistry
1. how historical experiment could make a recovery of lost knowledge; boiling.
I had come across many reports of unruly variations in the boiling point of water. (boiling of pure, distilled water under standard pressure)
18th and 19th … boiling temperature depended greatly on the material of the vessel employed, … , and on the amount of dissolver air present in the water.
… a Thermometer … George Adams … . There are two boiling points marked on this scale: “Water boyles vehemently” at 212F and “begins to boyles” at about 204F.
While boiling water, … something that looks vaguely like boiling usually begins around 97C, … quite active boiling from around 98C. …
Watching this makes of realize that boiling is a complicated phenomenon, not likely to take place at a precisely fixed temperature.
2. the extension of scienctific knowledge: early electrochemistry.
Wollaston(1801)의 실험.
아연도선을 희석된 염산에 넣으면수소기체가 발생하며 아연이 녹는다.
구리도선을 같은 용액에 넣으면 아무 반응이 없다.
그런데 두 도선을 서로 연결하면 구리도선 주위에서 수소기체가 발생하고 구리는 녹지 않는다.
=> 볼타전지와 다름 아니다. 볼타는 염산이 아닌 NaCl수용액을 사용한 것이 차이점.
<질문>
- 산이 아연을 공격하는 것도 아닌데 어떻게 전자가 빠져나올 수 있는가?
- 전자가 구리에서 용액으로 빠져 나갈 때, 무슨 일이 일어나는가? - 이게 미스터리.
- 소금물에는 이 전자들을 수용할만큼 충분한 양의 수소이온이 없다. 물론 수소기체도 발생하지 않는다.
- 만약 나트륨 이온은 아무것도 하지 않는다. 만약 나트륨 이온이 전자를 받아들인다면 나트륨금속이 생길테니까.
=> 이 전자들이 비화학적 방식으로 어떻게든 용액을 통과할 것(pass through)이라고 생각하여 실험 설계. (이후 생략)
Complementary experiments for science
It seems clear that science does leave some valuable things behind as it progresses.
Some basic phenomena become forgotten, and some basic questions cease to command attention. … As science develops, it may be the case that nothing of fundamental importance rests any longer on its historical starting points.
Metaphorically: the upper layers of a tower can be supported by structures other than what they first rested on during the construction process. We know the Eiffel Tower stands very well with a great empty space at the bottom - likewise for science.
The discipline of HPS can serve as a refuge for these and other neglected and excluded scientific questions.
HPS in this complementary mode is not about science, rather, it is science, only not as we know it.
So I have called it “complementary science”.
The kind of historical experiments that I have just described can clearly serve the purposes of complementary science, making a recovery and extension of scientific knowledge. “Complementary experiments”
complementary experiments have a particular value for science education, …
Reproducing these “classic experiments” can be an aid to teaching basic scientific facts and ideas, making them more vivid and memorable …
In contrast, complementary experiments can aid science education in some very distinctive ways.
(1)
Complementary experiments can introduce students to phenomena well-known to past scientists and some current experts but generally neglected in science teaching.
This adds to students’ knowledge at a factual level. … Caviccji (2003,2009) and Crawford (1993) ever argue quite plausibly that confusion has a positive pedagogical role to play.
(2)
Doing experiments that fall outside standard pedagogical frameworks will give students an improved sense of the nature of scientific practice.
Historical experiments can be used to refine our philosophy of science - or, to put it in terms more familiar to science educators, to improve our conceptions of NOS.
This function can be served well by historical replications. If students can make extensions in previously uncharted direction, they can have a genuine experience of inquiry and take a live lesson in NOS from that experience.
(3)
A related benefit is the cultivation of original and independent thinking, and a critical and inquiring attitude in students.
… historical experiments provide a way to avoid this problem(단지 정해진 학습), and I think complementary experiments will serve this purpose best, because they focus on unknown, unexpected or unorthodox results.
Complementary experiments disturb scientific complacency.
Understanding science simply as it stands is not good enough for a science education that is intended to foster critical and original thinking.
For stirring students’ critical faculties into action, there is nothing like witnessing and producing phenomena that do not fit into standard theories.
…debate about whether and to what extent science education should foster critical inquiry, …
first, the train of research scientists is not the only aim of science education. the aim of science education must be considered within the larger framework of general or liberal education, and critical thinking is vital in that context.
secondly, even for the training of normal scientist, … Schwab’s view was that as science develops more and more research is devoted to fluid inquiry, so it becomes more and more necessary to train scientists for fluid inquiry …
Finally, (It may be objected that students themselves want definite answers, rather than uncertainly and open-ended questions.)
It is also our duty as educators to introduce students to the uncertainty and discomfort of real scientific research, to let them realize that “thinking begins with not knowing”
(4)
Because complementary experiments enable a direct engagement with natural phenomena without well-entrenched expectations of pre-determined outcomes, they will stimulate students’ sense of wonder about nature and their excitement about science.
… many students will be drawn in by the sheer curiosity of phenomena and the independence of inquiry that complementary experiments can bring.
In conclusion
a thoughtful engagement with past science helps us realize that modern specialist science only deals with a restricted range of things in a restricted range of ways.
Opportunities for the recovery and extension of scientific knowledge should not be neglected in science education.
We can use them(complementary experiments) to give students a genuine experience of open-ended scientific inquiry, allowing them tho discover something about nature for themselves and in the process also learn what it means to do original research.
Much of science teaching has even governed by the aim of inducting students as effectively as possible into the basic framework of modern science.
I believe that it will be beneficial, for the students themselves and for society a large, to incorporate complementary science into science education at all levels.
[논의 주제]
- 역사적 실험 뿐 아니라 과학사를 과학교육에 도입하는 것은 많은 장점을 갖고 있다고 생각한다. 특히 글쓴이도 제시하였듯 과학교육에서 과학지식의 <사실적 배경>을 강화하고 학생들에게 <과학의 본성>을 이해하게 하는 데 도움이 될 듯 하다. 이를 구체적으로 교육과정에서 활용할 수 있는 방안에는 무엇이 있을까?
- 그런데 글쓴이가 제시한 상보적 과학(실험)을 통한 과학적 탐구력과 비판적 사고력 등을 향상시키는 것이 실제 과학수업에서 얼마만큼 큰 효과가 있을지 생각해보자. 글쓴이도 지적하였듯, 학생들에게 ‘열린 결과’와 ‘자율성’ 등을 주고 스스로 실험을 설계하며 탐구하게 하였을 때 학생들의 탐구능력과 사고력이 향상될 것으로 기대하는 것은 일종의 공식처럼 받아들여지는 것 같다. 그런데 정말 그럴까?
- 2번에서 역사적 실험을 재해석하고 새로운 방식으로 탐구하는 과정에서 탐구력과 비판적 사고력이 향상된다는 주장을 받아들인다고 하자. 그런데 그것(탐구/사고력 향상)이 꼭 과학사에 있는 실험을 도입해야 가능한 것인가? 어쩌면 단순하게 특별히 고안된 실험상황이 보다 더 교육적으로 쓸모가 있을 수 있는 것이 아닌가? 어쩌면 장하석 선생 같은 ‘준과학자’에게, 혹은 마침 운이 좋게도 새로운 발견이 가능했던 실험주제를 찾아냈기 때문에 가능했던 일을 모든 학생들에게 적용하자고 하는 것은 다소 무리한 주장은 아닌가? 또한 보다 <열린 형태의 탐구과정>이라고 한다면, 과학이 아닌 <공학적 활동>들이 더 유익할 것처럼 보이기도 한다. 이를테면 컴퓨터로 코딩을 하여 프로그램을 개발하거나 발명품을 만들어 내는 것과 같은 활동들은 과학에서의 탐구활동보다 훨씬 열린 형태가 아닌가?
- <모든 이를 위한 과학>은 과학교육에서 중요한 문제이다. 더욱이 현대과학의 발전이 일반인들이 쉽게 이해할 수 있는 수준을 훨씬 뛰어넘어 과학을 일반인들에게 쉽고 재미있게 전달하는 것이 중요한 과제로 인식되고 있는 것 같다. 최근 <인터스텔라>의 사례에서 보듯이, 일반인들의 과학에 대한 갈증은 상상을 초월할 정도이다. 이를 채워주기 위한 대중서적과 대중강연 시장은 날로 성장하여 많은 스타 저술가와 강사들을 배출해내고 있다. 그리고 그 중심에는 이름만 들어도 알만한 유명 대중과학자들이 있다. 그런데 이런 프로과학자들은 과학을 보는 시각과 이해에 있어 일반인들과는 큰 격차가 있는 것 또한 사실이다. 이에 따라 그 중간을 잇는 가교 역할을 과학교육자들이 맡아야 하는 것이 아닌가 하는 생각이 든다. 즉 “과학자의 언어와 일반인의 언어를 모두 이해하는 사람”으로서의 과학교육자의 역할 말이다. 이 주제에 대해서 이야기하면 좋겠다.
▼ 아래는 앞서 소개한 논문의 첫장
2015.06.17.(수)
'Review > 물리&과학' 카테고리의 다른 글
까마귀와 앵무새의 지능 대결 @동물의 왕국: ChatGPT-4에게도 물어봄. (0) | 2023.05.19 |
---|---|
한반도 개기월식 2022.11.08.화 (0) | 2022.11.09 |
문이과 통합에 대한 소견(2). 한 독자님(?)의 지적에 대한 답글. (0) | 2014.09.28 |
물리교육(과학교육) 어떻게 할 것인가? (0) | 2014.09.14 |
2014 한국초등과학교육학회 하계학술대회 참관기(8월8일) (0) | 2014.08.13 |